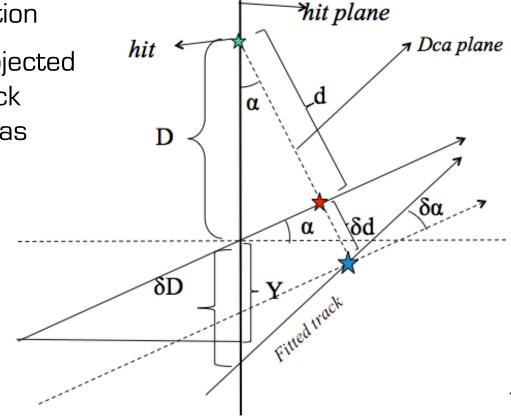


STAR Tracking Summary

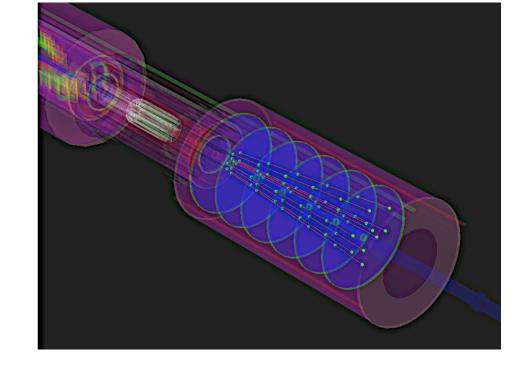
Gene Van Buren for the STAR Software & Computing Team October 4, 2016

Packages in Tracking


- Seed finders
 - TPT: port of NA49's using conformal mapping within TPC
 - Sti: follow-the-track inward using global coordinates
 - CA (cellular automata): parallel-izable
 - KNN: nearest-neighbor search
- Kalman-based track fitters
 - EGR: port of NA49's global refit code for TPC
 - Sti: attempt at developing a fast, but detector-independent tracker
 - Stv: further detector independence and avoidance of custom geometries for tracking

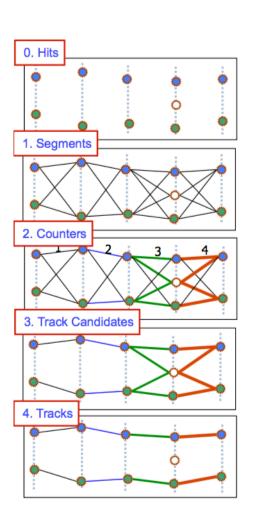
Sti (Integrated Tracker)

- Initial attempt (early 2000's) to provide a tracker that could handle any detector type...
 - ...but realities of speed issues forced scaled back goals
- Custom (Sti-specific) geometry with limited volume types and orientations specific to barrel-like detectors (including STAR's TPC, SSD, SVT)
 - Also works for HFT (PXL+IST+SSD) detectors, but extra attention and care was needed with Sti versions of HFT detector geometries to ensure sufficient performance (Pos VERTEX2015 (2015) 013; J. Webb, CHEP 2016)
- Restricted magnetic field orientation (along z-axis)
- Hit re-use policies:
 - Currently not allowing re-use of TPC hits to avoid track cloning (may benefit from further study)
 - HFT hit re-use has been shown to provide benefit
- Embarrassingly parallel reconstruction (one job = one CPU core) would be difficult to beat for efficient use of computing farm (Amdahl's Law)


Stv (VMC Tracker)

- Trade some speed for potential gains in accuracy and ease of maintenance
- Full geometry representation (based on GEANT geometry directly) using ROOT/TGeo (no custom geometry)
- Off-the-shelf (GEANT) track propagator
- Arbitrary magnetic field orientation
- Fits are done with hit errors projected to a plane orthogonal to the track instead of in the detector plane as is done in Sti
 - Allows arbitrary detector orientation, e.g. forward tracking

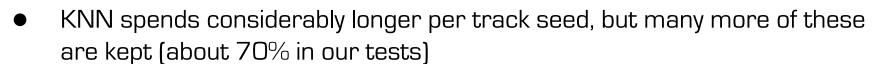
Stv status


- Able to match accuracy of Sti for existing geometries
- Successfully used for STAR studies of possible forward tracking projects (not possible with Sti)
- Still nearly twice as slow

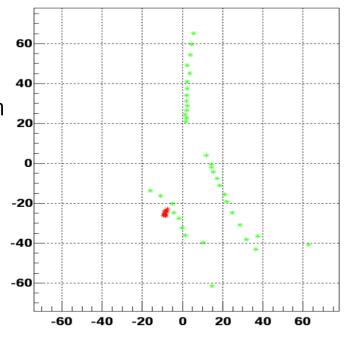
- Stv spends significantly more time navigating tracks through the geometry
- May be addressable through numerous small parameter tweaks, and/or re-working code to more fully utilize vectorized math, and/or simplification of the geometry model

Cellular Automata

- Highly parallel-izable
- Particularly useful for HLT where speed trumps both accuracy and fully maximizing the efficiency of resource utilization (i.e. just throw more processor cores at the task)
 - Output seeds are generally full TPC tracks that can be fit (e.g. Kalman), but not highly accurate (e.g. no accounting of energy loss)
- Resources:
 - (Advances in tracking and trigger concepts, I. Kisel,
 Journal of Physics: Conference Series 523 (2014) 012022
 - FCTTC workshops (https://indico.gsi.de/conferenceDisplay.py?confld=2715)



StiCA


- CA + Sti:
 - Run CA as an initial seed finder
 - Run Sti seed finder on remaining unused hits to recover some additional efficiency
 - Run Sti fitter (includes materials) for accuracy
- Re-use of hits at seed-finding stage, but re-use is eliminated before the fitting stage
 - Highest quality (longest) tracks get hit priority
 - Remaining track stubs may survive to be fit, or may be too short and die
- More stable efficiency with respect to occupancy (luminosity)

KNN

- Based on K-nearest-neighbor approach
 (https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm)
 - Hit neighbors (density) determined in projection from transverse radially outermost hits back towards (0,0,0) as most probable origin
- Hoped that it would be faster than Sti's seed finder
 - Sti starts many seeds that are eventually aborted (about 90%)

- Efficiency impacted by ordering of outermost hits
- Reduced efficiency and speed vs. Sti remain open issues
 - Potentially addressable through numerous small parameter tweaks while balancing speed vs. efficiency

Summary

- Choice of tracking depends on what aspects are most important
 - Sti is a balanced solution that has been used for a decade to produce high quality physics results for large productions with finite resources
 - Maintenance of geometries remains an issue and required notable attention for the HFT program
 - Sti geometries are too limited for forward tracking
 - StiCA coming into more use
 - Higher efficiencies with only marginal effects on speed
 - Does not address shortcomings of Sti
 - CA used by itself for HLT where parallel-izable speed is king.
 - Stv is in our pocket if & when physics demands it
- Flexibility to run other, or even multiple seed finders